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Abstract: Cucurbits are economically important crops that are widely cultivated in many parts of

the world, including the southern US. In recent years, higher temperatures have favored the rapid

build-up of whiteflies in the fall-grown cucurbits in this region. As a result, whitefly-transmitted

viruses (WTVs) have severely impacted the marketable yield of cucurbits. In this review, we discuss

three major groups of WTVs negatively impacting cucurbit cultivation in the southern US, including

begomoviruses, criniviruses, and ipomoviruses. Here, we discuss the available information on the

biology, epidemiology and advances made toward detecting and managing these viruses, including

sources of resistance and cultural practices.
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1. Introduction

Cucurbits are important crops that are consumed as fruits or vegetables. They belong
to the family Cucurbitaceae and comprise 965 species in 95 genera [1]. They are an excellent
source of dietary fibers, vitamins, and essential minerals such as zinc, magnesium, and iron.
Cucurbit seeds are also a good source of essential fatty acids. Many parts of cucurbits were
used in traditional medicine in India, China, and Africa for treating various ailments [2].
Cucurbits are cultivated in more than 100 nations with 12 countries contributing to more
than 70% of the total global yield [3]. The US is among the top cucurbit-growing nations, and
has an estimated field production of nearly 109 million metric tons on about 229,000 hectares,
and contributes to an economic value of approximately USD 1.43 billion [4]. Economically
important cucurbit grown in the region include cantaloupe (Cucumis melo var. cantalupensis
Naudin), cucumber (C. sativus L.), honeydew (C. melo L. (Inodorus Group) ‘Honey Dew’),
muskmelon (C. melo), pumpkin (Cucurbita spp.), yellow squash (C. pepo), watermelon
(Citrullus lanatus), and zucchini (Cucurbita pepo L.) [1].

Cucurbits can be infected by many pathogens including at least 59 different species
of plant viruses from different genera [5]. In recent years, the production of cucurbits has
been challenged globally due to the impact of whiteflies (notably Bemisia tabaci) (Hemiptera:
Aleyrodidae) and the viruses that they transmit. In the states of Georgia and Florida,
cucurbit production is heavily affected by these viruses and there are sporadic reports
of incidence from other states in the Southern US. During the fall of 2015-2017, whitefly-
transmitted diseases were responsible for 35% of crop losses in squash in Georgia [6].
Extensive yield losses were reported in Florida as well due to a tremendous population
increase of B. tabaci that was complemented with virus incidence [7]. This review focuses on
viruses infecting cucurbits in the Southern US, emphasizing Begomoviruses, Criniviruses,
and Ipomoviruses transmitted by whiteflies.
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2. DNA Viruses

2.1. Cucurbit Leaf Crumple Virus

Cucurbit leaf crumple virus (CuLCrV) is the most prominent DNA virus infecting
cucurbits in the Southeastern US. CuLCrV was discovered in California during the fall
of 1998 on volunteer watermelon in the Imperial Valley [8]. The virus was also found
infecting pumpkin, muskmelon, and honeydew melon in Arizona and Texas around the
same time [9,10]. Symptoms on squash included crumpled, curled and thickened leaves
with disease incidence ranging from 35% to 95% [11]. CuLCrV belongs to the genus
Begomovirus within the family Geminiviridae [10,12]. Generally, begomoviruses possess
circular ssDNA genomes ranging from 2.5 to 2.7 kb [12]. The genome of CuLCrV is similar
to other bipartite begomoviruses, and phylogenetic analysis placed the virus in the squash
leaf curl virus (SLCV) cluster of New World bipartite begomoviruses [10].

In the southeastern US, CuLCrV was first reported on yellow straightneck and zucchini
squash (Cucurbita pepo L.) in Florida in 2009 [13]. This was also the first time a begomovirus
infection was reported on cucurbits in Florida and in the southeastern US. In Georgia,
the natural incidence of CuLCrV is observed on all cucurbits grown in the fall including
cantaloupe, cucumber, squash, and zucchini [14]. However, squash is the most affected
crop with infection on 85% to 90% of samples tested and also suffered the most severe
symptoms among all cucurbits [14]. Symptoms of CuLCrV on zucchini included green
mosaic mottling and crumpling with the virus detected on 87% of samples tested. CuLCrV
incidence was lower on cantaloupe (29–53%) and cucumber (53–69%) when compared
to squash in the field [14]. Typical symptoms of leaf crumpling caused by CuLCrV on
squash were also not observed on cucumber and cantaloupe. Under greenhouse conditions,
symptoms in squash can be observed on the topmost leaves as early as 10 days post-
inoculation when young seedlings are inoculated. The earliest symptoms include pale
yellow spots on the leaves (Figure 1A). Newly emerging leaves become crumpled, curled
and thickened (Figure 1B). Severely infected plants become very stunted (Figure 1C). Fruits
on infected plants have green streaks and appear bumpy (Figure 1D). Leaf crumpling,
the typical symptoms caused by CuLCrV on squash, was not observed on cucumber and
cantaloupe. Apart from being a serious problem in Georgia and Florida, CuLCrV has also
been identified in South Carolina [15] although heavy losses have not been reported.

 

Figure 1. Symptoms caused by cucurbit leaf crumple virus (CuLCrV). Squash is the most affected

crop by CuLCrV (A–D). Symptoms begin as diffuse yellow spots (A) and progress to crumpling (B,C)

and stunting (C) in severe cases. The fruits on infected squash display green streaks and bumps

(D). Symptoms of CuLCrV in zucchini (E) are milder than in squash and include mild chlorosis and

crumpling. Photo Credit: S.R.K. and S.B.

CuLCrV is transmitted by the whitefly B. tabaci Gennadius (Middle East-Asia Minor
1 [MEAM1], formerly called biotype B) in a persistent and circulative manner [16,17].
CuLCrV can be transmitted transovarially as well as through mating by B. tabaci, with low
frequency in each case. However, the rate of transovarial transmission was demonstrated
to be low at only 3.93% in nymphs and 3.09% in adults [16]. Additionally, the recipient
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adults that acquired CuLCrV transovarially and via mating were not able to transmit the
virus to squash plants suggesting that transovarial and mating CuLCrV transmission might
not contribute to CuLCrV epidemics [16]. Seed transmission has recently been reported on
begomoviruses [18–20], but is not known for CuLCrV. However, this is a very important
aspect of CuLCrV transmission that needs to be studied.

2.2. Squash Leaf Curl Virus (SLCV)

Squash leaf curl virus (SLCV) was the first begomovirus infecting cucurbits identified
in the USA. It was recorded on squash exhibiting leaf curl and stunted growth symptoms
in the early 1980s from California [21]. Characteristic symptoms in squash, melon, and
watermelon include leaf curling, foliar mottling or mosaic with curling or stunting, blis-
tering, and fruit deformation [5]. On pumpkin, infected plants display green or yellow
mottle and mild foliar mosaic patterns with chlorotic spots [22]. SLCV was also found
infecting watermelons in Texas [23] and Arizona [24]. There have not been any reports of
widespread damage to cucurbits due to this virus after the initial documentation.

2.3. Watermelon Chlorotic Stunt Virus (WmCSV)

WmCSV is an Old World begomovirus initially reported from Yemen infecting water-
melon plants in 1986, [25], and it is widespread in several regions of the Middle East. In the
New World, it was first reported from Sonora, Mexico, infecting watermelon plants during
the summer of 2012 [26]. In cucurbits, the symptoms include stunting, vein yellowing, and
the appearance of chlorotic patches on leaves [27]. Under laboratory conditions, it could
infect cucurbits such as melon, squash, watermelon and non-cucurbits such as Nicotiana
benthamiana and tomato [27]. A few years after its emergence, it was detected in cactus
(Cactaceae family) plants of Arizona, USA, along with SLCV, indicating a possible spillover
from an agricultural area to the natural vegetation [28]. The identification of WmCSV in
the USA and Mexico indicates that this virus could be broadly distributed in the New
World [27].

3. RNA Viruses

3.1. Criniviruses

Criniviruses belong to the genus Crinivirus in the family Closteroviridae [29] and pose a
serious threat to cucurbit production worldwide [30]. Criniviruses have non-enveloped
filamentous particles and the genome consists of bipartite ssRNAs in most of the mem-
bers [29]. In the southeastern US, two criniviruses have been reported to infect cucurbits,
including cucurbit chlorotic yellows virus (CCYV) and cucurbit yellow stunting disorder
virus (CYSDV). The genomes of CCYV and CYSDV are very similar with the only exception
being the presence of putative proteins p5 and p25 in place of p6 protein in CCYV towards
the 3′ end of RNA 1. CCYV and CYSDV are transmitted by cryptic species of B. tabaci,
MEAM1 and Mediterranean (MED, formerly Q) [31–33]. The mode of transmission is
semi-persistent which means that the whiteflies can acquire and transmit the virus in a
short period of time [34].

3.1.1. Cucurbit Yellow Stunting Disorder Virus (CYSDV)

CYSDV was discovered in the United Arab Emirates in 1982 on melons [35] and is now
prevalent in many tropical and subtropical cucurbit-growing regions of the world [35–37].
In North America, CYSDV was observed in 1999 from field and greenhouse-grown Cucumis
melo in Texas [38], followed by California and Arizona [24], and it became widespread
in the western parts of the Sonoran Desert in Arizona and Sonora, Mexico [39]. Soon
thereafter, it was found infecting squash in Florida (C. pepo L.) [40]. In Georgia, the virus
was first identified as infecting cucumber, cantaloupe and yellow squash in 2016 [41]. The
symptoms of CYSDV initially appear as a yellow-green chlorotic mottle, which develops
into interveinal chlorosis later [36]. Yellowing or interveinal chlorosis are more pronounced
on older leaves [36] (Figure 2A,B). Early infection of cucumber, melon, and watermelon
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plants by CYSDV results in reduced yields. Fruit number and weight are reduced in
infected plants [42]. In a survey conducted in 2019 and 2020 in Georgia, natural infection
of CYSDV was found on cantaloupe, cucumber, yellow squash, and zucchini squash with
the highest incidence on cantaloupe and cucumber [14]. CYSDV is often detected as co-
infection with other viruses including CuLCrV and CCYV which are also transmitted
by the same vector [14]. CYSDV was also found recently infecting watermelon in South
Carolina [43] and commercial fields in Alabama [44].

 

Figure 2. Symptoms of criniviruses on cucurbits. Chlorosis on the crown region of cantaloupe (A) and

cucumber (B) in commercial fields due to mixed infection of cucurbit chlorotic yellows virus (CCYV)

and cucurbit yellow stunting disorder virus (CYSDV). Initial symptoms of CCYV infection as yellow

spots on cucumber (C,D) and squash (E,F). Severe chlorosis is on the lower leaves of squash (G) and

interveinal chlorosis is on wild radish infected with CCYV (H). Photo Credit: S.R.K. and S.B.

3.1.2. Cucurbit Chlorotic Yellows Virus (CCYV)

CCYV was first reported in 2004 from Japan where it caused heavy losses in melon
production [45]. CCYV is now present in Taiwan [46], China [47], India [48], Sri Lanka [49],
Philipines [50], Sudan [51], Greece [52], Spain [53], Iran [54], and Lebanon [55]. In the US,
it is an important emerging virus in cucurbit crops such as melons and watermelons [56].
CCYV was introduced in the southwestern US in 2014 [57]. The symptoms of CCYV
are nearly indistinguishable from that produced by CYSDV. Symptoms start as chlorotic
spots with diffuse margins which later coalesce and develop into interveinal chlorosis.
On an infected plant, older leaves appear brittle with interveinal chlorotic spots, while
younger leaves are also chlorotic with yellowing between the veins (Figure 2C–F) [58].
Early infection of cucumber, melon, and watermelon plants by CCYV results in reduced
yields and reduced sugar content in melons [59]. In the Southeast, CCYV was first detected
in Georgia [60] followed by Florida [61], and Alabama [62]. Under natural conditions,
CCYV causes diseases in cantaloupe (Cucumis melo), cucumber (C. sativus), and watermelon
(Citrullus lanatus) [33]. Under experimental conditions, CCYV could cause infection in
other cucurbit hosts such as Luffa cylindrica [33] and non-cucurbit hosts such as Beta vulgaris
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(beet), Chenopodium amaranticolor, C. quinoa, Datura stramonium (datura), Spinacia oleracea
(spinach), Lactuca sativa (lettuce), and Nicotiana benthamiana [33]. Mixed infections of CCYV
with CYSDV and CuLCrV are common in the southeastern US. CCYV isolates from Georgia
clustered with the Asian isolates of the virus [14]. Symptoms of CYSDV and CCYV infection
may also be confused with those caused by various nutritional deficiencies or by those
associated with other diseases, such as cucurbit yellow vine disease and downy mildew.

3.2. Ipomovirus

In 2003, a previously unknown virus was detected in squash in Florida [63]. The
host range, mode of transmission and genome sequence indicated that this virus is a pre-
viously undescribed Ipomovirus and the name Squash vein yellowing virus (SqVYV) was
proposed [63]. Ipomoviruses are whitefly-transmitted plant viruses in the family Potyviridae
and possess filamentous flexuous virions [64,65]. The genome organization of SqVYV is
similar to other potyvirids, but without a Helper Component-Proteinase (HC-Pro) that aids
aphid transmission of potyviruses [64]. Unlike other potyviruses, SqVYV is transmitted
by B. tabaci MEAM1 in a semi-persistent manner [66]. In 2005, this virus was linked to
watermelon vine decline (WVD) in Florida and caused severe monetary losses to water-
melon growers in South Florida [67]. The symptoms of WVD start with yellowing of the
foliage followed by browning and the collapse of the entire vine within weeks of the first
symptoms (Figure 3 A). The symptoms appear as the fruits approach harvestable size.
The fruits have discolored blotches on the rinds (Figure 3 B) and the flesh is often too red
(Figure 3 C) with an off taste [63,68].

 

Figure 3. Symptoms of watermelon vine decline disease caused by squash vein yellow virus. The

vine declined at the time of harvest (A), with discolored blotch and necrotic symptoms on the rind

(B) and dark red color on the flesh (C) on a commercial watermelon field in Georgia during the Fall

of 2023. Photo Credit: S.B. and S.R.K.

Under experimental conditions, SqVYV infects a wide variety of cucurbits such as
pumpkin, tropical pumpkin, squash, and luffa. The virus is devastating mainly due to
its ability to cause vine decline and fruit rot in watermelons. On other cucurbits, such
as pumpkin, squashes, and in luffa, SqVYV develops vein yellowing in inoculated and
systemic leaves, while in cantaloupe and cucumber vein yellowing was transient in systemic
leaves immediately above the inoculated leaves. SqVYV also infects cucurbit weeds such
as balsam apple (Momordica balsamina) and smellmelon (Cucumis melo) under natural
conditions and creeping cucumber (Melothria pendula) under experimental conditions [69].
Squash vein yellowing virus (SqVYV) was isolated from ivy gourd (Coccinia grandis) [69].
SqVYV failed to infect plants other than cucurbits tested [43]. In balsam apple, vein
yellowing was observed throughout the plant [69]. SqVYV is now widely distributed in
watermelon, squash and cucurbit weeds in southwest and west central Florida [70], and has
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also recently been reported from South Carolina [68]. SqVYV was reported from Georgia in
2011 [71] but not detected again until recently. In the fall of 2023, SqVYV was detected in a
commercial field in Georgia causing vine decline in 70-80% of the crop (Figure 3A–C).

4. Whiteflies, the Leading Carrier

Globally, whiteflies (Hemiptera:Aleyrodidae) have long been economically important
agricultural pests. Whiteflies transmit more than 300 known plant pathogenic viruses to
more than 1000 known plant species across the world [72,73]. The most widely known
species of whiteflies are B. tabaci (sweet potato whitefly) and Trialeurodes vaporariorum
Westwood (greenhouse whitefly) [73,74]. These two species are among the most destructive
insect pests of agricultural crops, vegetables, and ornamental plants in the southern US [73].
Specifically, B. tabaci is a major threat to vegetable production in the southern US. Bemisia
tabaci (MEAM1) was initially introduced in the US around 1985 and has since rapidly spread
across the southern US [75,76]. Following the introduction of this whitefly to the US, it has
become a primary vector responsible for the transmission of several virus species. Besides
virus transmission, whiteflies can also cause severe injury through feeding and secreting
honeydew. The preference of whiteflies for cucurbits over other crops in the agrosystem
could explain why they are more vulnerable to whitefly-transmitted viruses (WTVs). For
example, whiteflies MED and MEAM1 species show a preference for cucumber over pepper
and tomato for colonizing and ovipositing [77–79].

5. Other Emerging Viruses of Cucurbits

The development of high-throughput sequencing (HTS) and bioinformatics has accel-
erated the discovery of novel viruses. The use of high-throughput sequencing facilitated
in the discovery of other plant viruses infections recently in Georgia. Because very little
information is available about these viruses, they are mentioned in this article.

5.1. Watermelon Crinkle Leaf-Associated Virus 1 and Watermelon Crinkle Leaf-Associated Virus 2

Watermelon crinkle leaf-associated virus 1 (WCLaV-1) and watermelon crinkle leaf-
associated virus 2 (WCLaV-2) are rather recently discovered viruses and not much is yet
known about them. Both viruses were discovered in China by HTS on watermelon dis-
playing virus-like symptoms, including leaf crinkling, mosaic, and bunchy top in samples
collected in 2015 and 2016 during a field survey [80]. WCLaV-1 and WCLaV-2 were believed
to have multipartite genomes consisting of three RNA molecules of ~6.8, 1.4, and 1.3 kb
when they were discovered. These two viruses were placed in a novel clade within the
family Phenuiviridae in the order Bunyavirales [80]. However, further studies revealed that
the genome of WCLaV-1 and WCLaV-2 is indeed bipartite consisting of a negative-sense
RNA1, encoding the RNA-dependent RNA polymerase, and an ambisense RNA2, encoding
the putative movement (MP) and nucleocapsid (NP) proteins [81]. Based on these features
and phylogenetic reconstructions, WCLaV-1 and WCLaV-2 has been provisionally assigned
to the genus Coguvirus (family Phenuiviridae) [81].

In 2021, these viruses were reported from Texas on watermelons displaying symptoms
consisting of mild leaf crinkling and yellow mosaic patterns [82]. Thereafter, these viruses
were also found infecting watermelons in Florida [83] and Georgia [84]. Apart from the
USA, these viruses were recently reported in Australia [85] and Brazil [86].

WCLaV-1 infected watermelon plants displayed mosaic, crinkling, and bunching
symptoms in Georgia, as described previously. The virus was detected in five counties
within south Georgia, indicating its widespread prevalence in the state [87]. WCLaV-
2, which was consistently found to be associated with WCLaV-1, was not identified in
Georgia. So far, watermelon is the only known host of WCLaV-1 and WCLaV-2. Neither
of these viruses was detected in cantaloupe grown at the same time as watermelon in
Georgia by HTS and PCR. Further studies including biology, vector relations and economic
significance of the virus need to be carried out starting with the standardization of a
protocol for transmission. So far, WCLaV-1 can be transmitted mechanically to watermelon
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at only a very low frequency of 2–5% [80]. WCLaV-1 and WCLaV-2 infected watermelon
also had very high levels of thrips population but the role of thrips or any other vector has
not been investigated [80]. The nearly complete genome of an isolate of WCLaV-1 from
Georgia (RNA1-OM751928 and RNA2-OM751930) assembled from small RNAs did not
show any significant divergence from those reported in Brazil (100% identity with RNA
1-LC636070 and 99% with RNA 2-LC636069;) and China (99% for RNA 2-MW751424.1). In
a recent survey conducted in Florida, WCLaV-1 was found to be the predominant virus in
cucurbits, followed by CYSDV and WCLaV-2 [88].

5.2. Persistent Viruses

Unlike acute viruses, persistent viruses do not cause symptoms in infected plants.
Hence, these viruses were previously called “cryptic” viruses [89]. For the same reason,
they have been poorly studied although their existence has been known for a very long
time. However, with metagenomic studies becoming more common, the abundance of
persistent viruses has been revealed [90–92]. Three persistent viruses viz. Cucumis melo
endornavirus (CmEV), C. melo amalgavirus (CmAV1), and C. melo cryptic virus (CmCV)
were recently reported in Georgia in the spring of 2021. CmAV1 and CmEV were detetcted
on watermelon and cantaloupe. CmCV was identified by HTS on watermelon; however,
the virus could not be detected by RT-PCR in any of the field samples.

CmEV belongs to the genus Endornavirus and the family Endornaviridae while CmCV
belongs to Deltapartitivirus of the family Partitivirdae, and CmAV1 is a virus member of the
genus Amalgavirus of the family Amalgaviridae. Persistent plant viruses are not known to be
transmitted horizontally by vectors [93]. However, they can be vertically transmitted at
nearly 100% levels through both ova and pollen [94]. Persistent viruses lack any movement
protein and do not move between plant cells but rather infect every cell and move by cell
division and are transmitted through seeds [95].

6. Mixed Infections of Whitefly-Transmitted Viruses (WTVs) Are Common

Mixed infection refers to the existence of more than one virus at a given time in a
host. Mixed infections have the potential to result in higher yield loss [96] and break-
down of field resistance in crops [97]. Mixed infections of WTVs in cucurbit crops are
common in Florida [69,88,98], Georgia [14], and South Carolina [43]. In some cases, mixed
infection of viruses is known to alter the plant phenotype severely compared with single
infections. Such alterations in phenotypic traits can further increase the attractiveness of
plants to the vector than singly-infected plants [99]. For example, CuLCrV and CYSDV
in mixed infections caused more severe symptoms on squash than any of these viruses
individually [17].

The accumulation of criniviruses, CCYV and CYSDV was significantly decreased
compared to single virus-infected plants under greenhouse [100] and field-collected sam-
ples [101]. In cucumber, the accumulation of both CCYV and CYSDV and subsequent
transmission efficiency of each of these viruses by whiteflies were significantly decreased
during mixed infections compared to those during single infections. However, their si-
multaneous transmission (both viruses transmitted together) efficiency was significantly
higher [100]. Crop-dependent preferential accumulation and transmission of one of the
viruses among CCYV, CYSDV, and CuLCrV over others during mixed infections was
observed. CYSDV accumulated in significantly lower amounts in mixed (CuLCrV and
CYSDV)-infected squash plants than in CYSDV-infected plants. As a result, whiteflies ac-
quired similar levels of CuLCrV, but reduced levels of CYSDV from mixed-infected squash
plants compared to plants infected with only any one of these viruses [17]. However, it is
unclear if the reduced accumulation of CYSDV in mixed-infected plants and reduced ac-
quisition by whiteflies thereafter would suppress whitefly-mediated inoculation of CYSDV
compared with acquisition and inoculation from CYSDV-infected plants. During surveys
in 2019 and 2020, squash samples infected with CuLCrV were larger than those infected
with CCYV and CYSDV [14]. On the other hand, crinivirus infections, of either CCYV or
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CYSDV were more prominent on cucumber and cantaloupe. These results indicate that
mixed infection of viruses in host plants and acquisition of multiple viruses by the vector
could have implications for virus accumulation, virus acquisition, vector preference, and
epidemics that sometimes are different from single-virus infection or acquisition. Therefore,
it is possible that virus accumulation differences in host plants (and subsequently in vectors)
following virus-virus interactions associated with mixed infection could play a crucial role
in influencing the epidemics of component viruses.

7. Alternate Hosts as Potential Reservoirs

CuLCrV virus has a wide host range which includes squash, watermelon, cantaloupe,
and many gourds, whereas honeydew melon, crenshaw melons, and casaba melons were
least susceptible [10]. Heavy incidence of CuLCrV is also reported on Phaseolus vulgaris
(snap beans) in Florida [13] and Georgia [102]. Not much work has been reported on weeds
that harbor CuLCrV in the field.

CYSDV infects both cucurbits as well as non-cucurbit crops. The main cucurbit hosts
in the Southeast includes cucumber, cantaloupe, squash, and watermelon. In California,
some non-cucurbit crops such as Lactuca sativa (lettuce), snap bean, Medicago sativa (alfalfa),
and some weed species such as Solanum elaeagnifolium (silverleaf nightshade), Malva neglecta
(common mallow), Sisymbrium irio (London rocket), Physalis wrightii (Wright’s ground-
cherry), and Sida hederacea (alkali mallow) were found to harbor CYSDV [103]. These
crops and weeds are also abundant in the southeastern US and could serve as a potential
reservoirs for CYSDV. Similarly, pigweed (Amaranthus spp.) is a potential reservoir for
CYSDV in Florida [104] while wild radish (Raphanus raphanistrum L.) is potential reservoir
for CCYV in Georgia [105]. Momordica charantia is a potential reservoir host of SqVYV [70].
Common cucurbit weeds like balsam apple and smellmelon are natural hosts of SqVYV,
and creeping cucumber is an experimental host [69].

Unlike crop hosts, weeds can survive even during non-crop seasons. Weeds grown
during the summer support the multiplication of whiteflies while winter weeds support
continuity of whitefly population. Whitefly populations gain a foothold when weather
warms and they multiply quickly during the summer. Identifying the appropriate weeds
that support whiteflies and the WTVs and their timely removal are essential to break the
continued life cycle of both whiteflies and WTVs [63].

8. Diagnosis

The success of virus disease detection and management depends upon diagnostics
methods and early detection of viruses. Characteristic symptoms induced by viruses on
diseased plants is the preliminary step in diagnosis, but this is nearly impossible due to the
mixed infections of more than one virus of the same or different genus on a diseased plant
at a time. Serological diagnostic tools are not available for any of the whitefly-transmitted
viruses present in the Southeast US. It would be much simpler and lower cost if such a
technique were available to screen large number of samples such as those required for
epidemiological studies.

CuLCrV concentrations are higher on the upper (young) leaves while that of criniviruses,
CCYV and CYSDV are higher on the lower (old) leaves. Hence, samples for the detection
of CuLCrV should be taken from upper leaves while those for CCYV and CYSDV should
be taken near crown of the plants. SqVYV is unevenly distributed in its hosts and often
appears to have a low titer in many tested plants [63]. Hence, the diagnosis of this virus
can be difficult. Typical potyvirus inclusions are not always found in leaf strips and leaf
dips, and thus, their analysis using electron microscope can be negative. Currently, no
antiserum is available for this virus. The best test is a RT-PCR or a nested RT-PCR assay
using primers based on the sequence of the capsid protein gene of SqVYV. Plant samples for
detection of SqVYV should be taken from the crown of the infected plant [63]. Mechanical
inoculation of watermelons with samples can also be useful for detecting SqVYV as death
of the inoculated plant is a diagnostic symptom [68].



Viruses 2023, 15, 2278 9 of 15

A simple one-step multiplex RT-PCR system has recently been developed for the
simultaneous detection of cucurbit leaf crumple virus, cucurbit yellow stunting disorder
virus, squash vein yellowing virus, and cucurbit chlorotic yellows virus [63]. This assay has
the potential to reduce cost, time and labor for the diagnosis of a large number of samples.
Another multiplex PCR assay to detect WTVs present in California including CuLCrV,
CCYV, and CYSDV has been developed [63].

Loop-mediated isothermal amplification (LAMP) is an isothermal technique that does
not require sophisticated instruments like thermal cyclers. A LAMP assay was developed
for simple, rapid and efficient detection of CuLCrV. The sensitivity assay demonstrated that
the LAMP reaction was more sensitive than conventional PCR, but less sensitive than qPCR.
However, it was simpler and faster than PCR and qPCR. Furthermore, this assay was able
to detect CuLCrV in mixed virus infections [63]. Recombinase polymerase amplification
(RPA) assays are also being developed for detection of these viruses at the University
of Florida.

HTS combined with subsequent application of bioinformatics for the detection and
identification of both known and novel plant viruses and other pathogens has been proven
to be successful with different sequencing platforms using nucleic acid preparation as
the starting material [106]. Moreover, HTS does not require previous knowledge of viral
sequences. The sensitivity of HTS was ten times higher than RT-qPCR [107]. Compared to
other techniques, this technique is time-consuming, and expensive so it cannot be employed
for regular diagnosis. HTS also revealed a significant percentage of mixed infection of
viruses among the samples tested [14].

9. Disease Management and Control

No single management tactic is effective enough to suppress whiteflies and reduce
the transmission of viruses in Georgia and other southeastern states. Several management
tactics aimed at reducing the impacts of B. tabaci MEAM1 and whitefly-transmitted viruses
were evaluated in Georgia. Among them, insect exclusion netting (IEN) significantly
reduces whiteflies and virus incidence on squash seedlings in the greenhouse [108]. In the
field, lower whitefly abundance and reduced virus symptom severity, were observed in
plots with UV-reflective mulch when compared to white plastic or live mulch. Overall,
field plots with row covers and those with UV-reflective mulch consistently produced
the greatest marketable yields [108]. Growers can reduce whitefly and virus pressure by
combining these cultural tactics, and selecting insecticides to preserve yields in squash
production in the southeastern US [108]. Insecticides and silver plastic mulch have been
effective in managing whiteflies and watermelon vine decline in Florida [109,110]. Results
from studies conducted on squashes cultivated both in experimental plots and grower’s
field revealed that whitefly infestation and the virus transmitted by them generally initiated
along the edges, which later spread to plants within the rows [111]. In such a scenario,
phytosanitary techniques or planting cover crops along the edges of fields could play an
important role in mitigating yield losses caused by whitefly-transmitted viruses.

Using cultivars with resistance to either vectors or the viruses transmitted by them
is an economical and effective way to avoid yield loss. Currently, no cucurbit cultivars
with resistance to CuLCrV, CYSDV, or CCYV are available commercially, but efforts are
underway to identify sources of resistance [112,113]. A melon breeding line PI 236355 is
completely resistant while MR-1, PI 124112, PI 179901, PI 234607, PI 313970 and PI 414723
have partial resistance against CuLCrV. A single recessive gene culcrv, controls the resistance
in PI 313970, a C. melo accession and likely in the other resistant accessions [113].

Resistance to CCYV was reported in a snap melon (Momordica group) (accession: JP
138332), originating from India [114]. This line accumulated relatively lower CCYV titer
compared to other melon accessions tested. A single recessive QTL located on chromosome
1 was found to be associated with resistance in this line [115].

Regarding CYSDV, resistance to cucurbit yellow stunting disorder virus was first
reported in the accessions TGR1551 (C-105, PI 482420) and TGR-1937 (PI 482431) [42].
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Characteristics of resistance include delayed and mild symptoms and were reported in
a few accessions under natural infection conditions in the United Arab Emirates (Jupiter,
Muskotaly, PI 403994) [116] and in Spain [42]. The resistance in TGR1551 was initially
reported to be controlled by a single dominant gene called Cys [42], but re-evaluations
showed an inheritance pattern consistent with that of a recessive gene [117]. Two QTLs
are associated with resistance to CYSDV in TGR-1551 located near chromosome 5 and
the interval between the two loci is mapped to be approximately 700 kb [118]. Several
accessions of Indian origin, most notably PI 313970, which also has CuLCrV resistance
showed resistance to the California and Arizona CYSDV strains of CYSDV [119]. Resistance
in this accession was also reported as monogenic recessive [120] and likely allelic to the
resistance in TGR-1551 [121]. Screening of germplasm under natural incidence in Georgia
and Florida (USA) identified several accessions that are potential sources of resistance
to CuLCrV, CYSDV, and whiteflies [122]. Several accessions of cucumber including PI
211589, PI 605923, and Ames 13334, developed less severe symptoms than the susceptible
accessions, while PIs 177364, 279807, 29342, and NSL 5476 performed better with low
disease pressure under field conditions [123]. Several watermelon accessions with moderate
resistance to SqVYV have been identified [124]. PI 392291 is resistant to vine decline caused
by SqVYV and could serve as an important source of resistance [125].

10. Conclusions

Over the years, the production of cucurbits in the US has experienced challenges due to
whiteflies and whitefly-transmitted viruses. In recent years, along with a higher incidence
of whiteflies there has been an increase in the incidence of plant virus diseases they transmit.
Mixed infections of two or more viruses are common adding to severity of impact in many
cases. Efforts are underway to mitigate the grower’s losses and to increase profitability
and sustainability. Ongoing research on identifying the resistance sources of whiteflies and
the viruses they transmit, identifying overwintering hosts, and developing integrated pest
and disease management practices is promisingMolecular understanding of the aspects of
host-virus interaction, synergism in cucurbits, whitefly-host-virus interactions etc., is also
needed to develop novel strategies of disease management and crop protection.
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